

Topic 3.1

The Chain Rule

The Chain Rule

A **composite function** is a function of the form $f(g(x))$, or $f(u)$, where f is the outside function and $u = g(x)$ is the inside function. The **chain rule** is a method to find the derivative of a composite function.

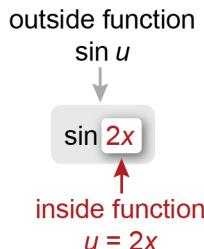
The derivative of a function of the form $f(g(x))$ is the derivative of the outside function with the inside function as input $f'(g(x))$ multiplied by the derivative of the inside function $g'(x)$.

chain rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Example

Consider the function $f(x) = \sin 2x$. The function f is a composite function with the outside function $\sin x$ and the inside function $2x$.



To differentiate the composite function f , differentiate the outside function $\sin x$, plug in the inside function $2x$, and multiply by the derivative of the inside function $2x$.

$$f(x) = \sin 2x \quad \text{Given function}$$

$$f'(x) = \frac{d}{dx}[\sin 2x] \quad \text{Differentiate both sides}$$

$$f'(x) = \cos 2x \cdot \frac{d}{dx}[2x] \quad \text{Apply sine rule to outside function and leave inside function intact}$$

$$f'(x) = \cos 2x \cdot 2 \quad \text{Apply power rule to differentiate inside function}$$

$$f'(x) = 2 \cos 2x \quad \text{Simplify}$$

Therefore, the derivative of $f(x) = \sin 2x$ is $f'(x) = 2 \cos 2x$.

To see another representation of the chain rule, let y be a composite function of x , where $u(x)$ is the inside function. The derivative of y with respect to x is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

The first term of the derivative $\frac{dy}{du}$ is the **derivative of y with respect to u** , which means the derivative of the outside function y with the inside function u left intact. The second term $\frac{du}{dx}$ is the **derivative of the inside function u with respect to x** .

chain rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

The derivative rules given in Unit 2 can be combined with the chain rule.

Let $u = f(x)$ be a function and consider each of the functions examined in Unit 2 as composite functions with u as the inside function. The derivatives are the given derivative functions multiplied by the derivative of u .

Power	$\frac{d}{dx}[u^n] = nu^{n-1} \cdot u'$
Natural exponential	$\frac{d}{dx}[e^u] = e^u \cdot u'$
Exponential	$\frac{d}{dx}[a^u] = (\ln a)a^u \cdot u'$
Natural log	$\frac{d}{dx}[\ln(u)] = \frac{1}{u} \cdot u'$
Sine	$\frac{d}{dx}[\sin u] = \cos u \cdot u'$
Cosine	$\frac{d}{dx}[\cos u] = -\sin u \cdot u'$
Tangent	$\frac{d}{dx}[\tan u] = \sec^2 u \cdot u'$
Secant	$\frac{d}{dx}[\sec u] = \sec u \tan u \cdot u'$
Cosecant	$\frac{d}{dx}[\csc u] = -\csc u \cot u \cdot u'$
Cotangent	$\frac{d}{dx}[\cot u] = -\csc^2 u \cdot u'$

3.1 Check for Understanding

1. $\frac{d}{dx}[\sin(\cos x)] =$

A. $\cos(\cos x)$
 B. $\cos(-\sin x)$
 C. $\sin(-\sin x) \cdot \cos x$
 D. $\cos(\cos x) \cdot (-\sin x)$

x	f	g	f'	g'
1	0	3	5	1
2	6	1	2	3
3	1	2	8	7

2. The table above gives selected values of two differentiable functions f and g along with their derivatives. If $y = f(g(x))$, what is the value of $\frac{dy}{dx}$ at $x = 2$?

A. 3
 B. 6
 C. 8
 D. 15