

Topic 2.1

Defining Average and Instantaneous Rates of Change at a Point

Difference Quotient

Limits can be used to formally define the instantaneous rate of change (IROC) of a function at a point, which was defined in Topic 1.1 as the **limit of the average rate of change (AROC)** over an interval as the **endpoints approach the same value**.

As discussed in Topic 1.1, the AROC of a function f between two points $(a, f(a))$ and $(b, f(b))$ is given by the **slope of the secant line** between the two points.

average rate of change
over $[a, b]$

$$\frac{f(b) - f(a)}{b - a}$$

To construct a limit of the AROC as the endpoints approach the same value, one of the endpoints must be a variable, so substitute x for b to get an expression known as the **difference quotient**, $\frac{f(x) - f(a)}{x - a}$.

Let h denote the distance along the x -axis between a and x , so $h = x - a$ or, when solved for x , $x = a + h$. Substitute the expression $a + h$ for x in the difference quotient to find another form of the difference quotient.

$$\frac{f(x) - f(a)}{x - a} \quad \text{AROC formula}$$

$$\frac{f(a + h) - f(a)}{a + h - a} \quad \text{Substitute } x = a + h$$

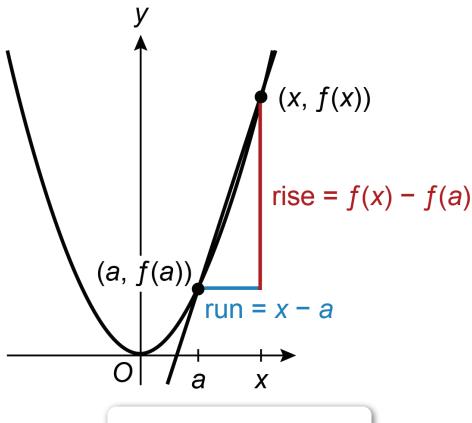
$$\frac{f(a + h) - f(a)}{h} \quad \text{Subtract in denominator}$$

Therefore, $\frac{f(x) - f(a)}{x - a}$ and $\frac{f(a + h) - f(a)}{h}$ are both functions that give the AROC of f between $(a, f(a))$ and any point $(x, f(x))$ in the domain of f .

Example 1

The graph below shows the function $f(x) = x^2$ for some interval that includes a .

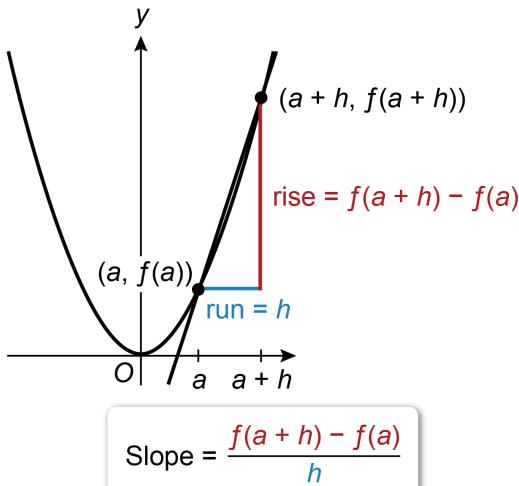
The **AROC** between $(a, f(a))$ and any point $(x, f(x))$ on the graph of the function is given by $\frac{f(x) - f(a)}{x - a}$, the **slope of the secant line** running through $(a, f(a))$ and the generic point $(x, f(x))$.



$$\text{Slope} = \frac{f(x) - f(a)}{x - a}$$

Example 2

Let h be defined as the distance between a and the generic value x . Therefore, $x = a + h$ and the **AROC** between $f(a)$ and $f(x)$ is given by $\frac{f(a+h) - f(a)}{h}$.



$$\text{Slope} = \frac{f(a+h) - f(a)}{h}$$

As defined previously, the **IROC** of a function f at $x = a$ is given by the limit of the AROC over an interval that contains a as the endpoints approach a .

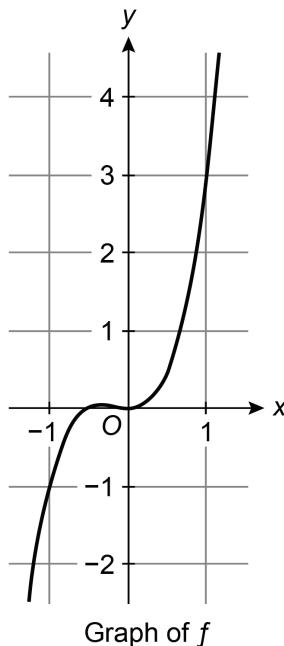
The IROC is also known as the **derivative**, and it is the focus of the next four units of this course.

2.1 Check for Understanding

x	0	1	2	3	4	5
$f(x)$	-3	2	10	7	13	12

1. The table above gives selected values of a function f . Which of the following is the average rate of change on $[0, 4]$?

- A. 3
- B. 4
- C. 5
- D. 16



2. The graph of a function f is given above. Which of the following is the slope of the secant line from $x = -1$ to $x = 1$?

- A. 1
- B. 2
- C. 3
- D. 4