Calculus BC Formulas

Section 1: Limits

roperties are true:	$x \rightarrow c$, $x \rightarrow c$, $x \rightarrow c$, $z \rightarrow c$, $z \rightarrow c$
Limit of a constant	$\lim_{x\to c} k = k$
Limit of x	$\lim_{x\to c} x = c$
Sum rule	$\lim_{x \to c} \left(f(x) + g(x) \right) = L + M$
Difference rule	$\lim_{x \to c} \left(f(x) - g(x) \right) = L - M$
Product rule	$\lim_{x\to c} \left(f(x) \cdot g(x)\right) = L \cdot M$
Constant multiple rule	$\lim_{x\to c} \left(k(f(x)) = k \cdot L \right)$
Quotient rule	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \ M \neq 0$
Power rule	$\lim_{x\to c} (f(x))^{r/s} = L^{r/s}, \text{ if } r \text{ and } s \text{ are integers, and } s \neq 0$
Limit of a composite function	lim $f(g(x)) = f(\lim g(x))$, if f is a continuous function

Properties of limits as $x \to \pm \infty$					
If <i>L</i> , <i>M</i> , <i>c</i> , and <i>k</i> are real numbers and $\lim_{x\to\pm\infty} f(x) = L$ and $\lim_{x\to\pm\infty} g(x) = M$, then the following properties are true:					
	Constant rule	$\lim_{x\to\pm\infty}c=c$			
	Sum rule	$\lim_{x\to\pm\infty}(f(x)+g(x))=L+M$			
	Difference rule	$\lim_{x\to\pm\infty}(f(x)-g(x))=L-M$			
	Product rule	$\lim_{x\to\pm\infty}(f(x)\cdot g(x))=L\cdot M$			
	Constant multiple rule	$\lim_{x\to\pm\infty}(k(f(x))=k\cdot L$			
	Quotient rule	$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \ M \neq 0$			
	Power rule	$\lim_{\substack{x \to \pm \infty}} (f(x))^{r/s} = L^{r/s},$ if <i>r</i> and <i>s</i> are integers and $s \neq 0$			
	Limit of $\frac{c}{x^r}$	$\lim_{x \to \pm \infty} \frac{c}{x^r} = 0$			

squeeze theore	m	
Conditions	Conclusion	
$g(x) \le f(x) \le h(x)$ for $x \ne c$	$\lim_{x \to 0} f(x) = 1$	
$\lim_{x \to c} g(x) = L \text{ and } \lim_{x \to c} h(x) = L$	$\lim_{x\to c} f(x) = L$	

Section 2: Derivatives

average rate of change over [a, b] $\frac{f(b) - f(a)}{b - a}$ definition of derivative of f at x = a $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

quotient rule
$$\frac{d}{dx} \left[\frac{u}{v}\right] = \frac{vu' - uv'}{v^2}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Differentiation rules		
Constant	$\frac{d}{dx}[c] = 0$	
Power	$\frac{d}{dx}[x^n] = nx^{n-1}$	
Natural exponential	$\frac{d}{dx}[e^x] = e^x$	
Exponential	$\frac{d}{dx}[a^x] = (\ln a)a^x$	
Natural log	$\frac{d}{dx}[\ln(x)] = \frac{1}{x}$	
Constant multiple	$\frac{d}{dx}[cf(x)] = cf'(x)$	
Sum and difference	$\frac{d}{dx}[f(x)\pm g(x)]=f'(x)\pm g'(x)$	

product rule
$$\frac{d}{dx}[uv] = uv' + vu'$$

acceleration

a(t) = x''(t)

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$$

L'Hospital's Rule also applies to limits as $x \rightarrow \infty$ or $x \rightarrow -\infty$.

Where (b, a) is a point on the graph of f, or a = f(b)

If $f''(c) < 0$	If $f''(c) = 0$	If <i>f</i> ″(<i>c</i>) > 0
f(c) is a	test is	<i>f</i> (<i>c</i>) is a
relative maximum	inconclusive	relative minimum

Section 3: Integrals and Differential Equations

A **left Riemann sum** approximates the value of a definite integral $\int_{a}^{\infty} f(x) dx$. The interval [*a*, *b*] is divided into subintervals, and the area bounded by the graph of *f* and the *x*-axis on each subinterval is estimated with a rectangle.

The base length b_n of each rectangle is the distance between the endpoints of the subinterval, and the height h_n is the function value at the left endpoint.

A **midpoint Riemann sum** approximates the value of a definite integral $\int_{a}^{b} f(x) dx$. The interval [a, b] is divided into subintervals, and the area bounded by the graph of f and the *x*-axis on each subinterval is estimated with a rectangle.

The base length b_n of each rectangle is the distance between the endpoints of the subinterval, and the height h_n is the function value at the midpoint of the subinterval m_n .

A **right Riemann sum** approximates the value of a definite integral $\int_{a}^{b} f(x) dx$. The interval [*a*, *b*] is divided into subintervals, and the area bounded by the graph of *f* and the *x*-axis on each subinterval is estimated with a rectangle.

The base length b_n of each rectangle is the distance between the endpoints of the subinterval, and the height h_n is the function value at the right endpoint.

A **trapezoidal sum** approximates the value of a definite integral $\int_{a}^{b} f(x) dx$. The interval [*a*, *b*] is divided into subintervals, and the area bounded by the graph of *f* and the *x*-axis on each subinterval is estimated with a trapezoid.

The height h_n of each trapezoid is the distance between the endpoints of the subinterval, and the bases b_n and b_{n+1} are the function values at the endpoints.

Fundamental Theorem of Calculus
(alternate form)
$$f(b) = f(a) + \int_{a}^{b} f'(t) dt$$
$$final initial on the change of the change o$$

Integration rules	
Constant	$\int cdx = cx + C$
Power	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
Constant multiple	$\int cf(x)dx = c\int f(x)dx$
Sum and difference	$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$
Natural exponential	$\int e^{x} dx = e^{x} + C$
Natural log	$\int \frac{1}{x} dx = \ln x + C$

The following are properties of definite integrals, where functions f and g are continuous on the closed interval [a, b] and a, b, and k are constants.

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Integrals of trigonometric functions

$$\int \sin u \, du = -\cos u + C$$

$$\int \cos u \, du = \sin u + C$$

$$\int \sec^2 u \, du = \tan u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

$$\int (\sec u \tan u) \, du = \sec u + C$$

$$\int (\sec u \tan u) \, du = \sec u + C$$

$$\int (\csc u \cot u) \, du = -\csc u + C$$

$$\int (\csc u \cot u) \, du = -\csc u + C$$

$$\int \tan u \, du = -\ln|\cos u| + C$$

$$\int \cot u \, du = \ln|\sin u| + C$$

$$\int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$\int \sec u \, du = -\ln|\csc u + \cot u| + C$$

improper integral

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

integration by parts

logistic differential equation

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{a}\right)$$

logistic differential equation

$$\frac{dP}{dt} = kP(a-P)$$

Euler's method equation

$$y_{n+1} = y_n + f'(x_n) (\Delta x)$$
next derivative step
y-value at current size
 x_n -value

area bounded by two
functions on [
$$x_1, x_2$$
]
$$A = \int_{x_1}^{x_2} (top - bottom) dx$$

Use the **disk method** to determine the volume of a solid of revolution formed by rotating a region about a horizontal line y = c (axis of revolution) over the interval a < x < b when y = c is a boundary of the region—there is no space between the region and y = c.

When a region is revolved about an axis of revolution, a perpendicular cross section of the solid is a disk where:

- *r* is the distance from the axis of revolution to the closest function f(x)
- *dx* is the thickness of the disk

Use the **washer method** to determine the volume of a solid of revolution formed by rotating a region bounded by f(x) and g(x) about a horizontal line y = c (axis of revolution) over the interval a < x < b when y = c is not a boundary of the region—there is space between the region and y = c.

When a region is revolved about an axis of revolution, a perpendicular cross section of the resulting solid is a disk with a hole (washer) where:

- *R* is the distance from the axis of revolution to the farthest function f(x)
- *r* is the distance from the axis of revolution to the closest function g(x)
- dx is the thickness of the washer

Section 4: Polar Coordinates, Parametric, Equations, and Vector-Valued Functions

Section 5: Infinite Series

A series of the form
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$
 is called a *p*-series.
p-series converges if $p > 1$
p-series diverges if $0
If $p = 1$, the resulting series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ is called a harmonic series, which diverges.$

nth-degree Taylor polynomial of
$$f$$
 about $x = c$

$$P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Maclaurin polynomial

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots \frac{f^{(n)}(0)}{n!}x^n$$

Known power series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

